Physical limits of flow sensing in the left-right organizer

نویسندگان

  • Rita R Ferreira
  • Andrej Vilfan
  • Frank Jülicher
  • Willy Supatto
  • Julien Vermot
چکیده

Fluid flows generated by motile cilia are guiding the establishment of the left-right asymmetry of the body in the vertebrate left-right organizer. Competing hypotheses have been proposed: the direction of flow is sensed either through mechanosensation, or via the detection of chemical signals transported in the flow. We investigated the physical limits of flow detection to clarify which mechanisms could be reliably used for symmetry breaking. We integrated parameters describing cilia distribution and orientation obtained in vivo in zebrafish into a multiscale physical study of flow generation and detection. Our results show that the number of immotile cilia is too small to ensure robust left and right determination by mechanosensing, given the large spatial variability of the flow. However, motile cilia could sense their own motion by a yet unknown mechanism. Finally, transport of chemical signals by the flow can provide a simple and reliable mechanism of asymmetry establishment.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Intraciliary calcium oscillations initiate vertebrate left-right asymmetry

BACKGROUND Bilateral symmetry during vertebrate development is broken at the left-right organizer (LRO) by ciliary motility and the resultant directional flow of extracellular fluid. However, how ciliary motility is perceived and transduced into asymmetrical intracellular signaling at the LRO remains controversial. Previous work has indicated that sensory cilia and polycystin-2 (Pkd2), a cation...

متن کامل

Vertebrate Left-Right Asymmetry: What Can Nodal Cascade Gene Expression Patterns Tell Us?

Laterality of inner organs is a wide-spread characteristic of vertebrates and beyond. It is ultimately controlled by the left-asymmetric activation of the Nodal signaling cascade in the lateral plate mesoderm of the neurula stage embryo, which results from a cilia-driven leftward flow of extracellular fluids at the left-right organizer. This scenario is widely accepted for laterality determinat...

متن کامل

The study of flood flow hydraulic for determining flood bed and river influences points (Atrak River case study)

Measures should be taken to make better use of the rivers in the study, construction and exploitation optimized to contain, mitigate risks and minimize the negative consequences and the improvement of the situation in order to meet human needs and protect the environment there. Route investigated in Khorasan Razavi province and city and river Ghochan is Atrak. Physiographic parameters using dig...

متن کامل

Leftward Flow Determines Laterality in Conjoined Twins

Conjoined twins fused at the thorax display an enigmatic left-right defect: although left twins are normal, laterality is disturbed in one-half of right twins [1-3]. Molecularly, this randomization corresponds to a lack of asymmetric Nodal cascade induction in right twins [4]. We studied leftward flow [5, 6] at the left-right organizer (LRO) [7, 8] in thoracopagus twins in Xenopus, which displa...

متن کامل

The chicken left right organizer has nonmotile cilia which are lost in a stage-dependent manner in the talpid3 ciliopathy

Motile cilia are an essential component of the mouse, zebrafish, and Xenopus laevis Left Right Organizers, generating nodal flow and allowing the reception and transduction of mechanosensory signals. Nonmotile primary cilia are also an important component of the Left Right Organizer's chemosensory mechanism. It has been proposed in the chicken that signaling in Hensen's node, the Left Right Org...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2017